Proving the chain rule

Given
$$f'(g(x))$$
 and $g'(x)$ exist, we want to find $\frac{d}{dx}(f(g(x)))$.
Let $m(k) = \frac{f(g(x)+k)-f(g(x))}{k}$ for $k \neq 0$ and $m(0) = f'(g(x))$.
Then $\lim_{k \to 0} m(k) = f'(g(x))$, so m is **continuous** at 0.
Note that $f(g(x) + k) - f(g(x)) = m(k)k$ holds for **all** k .
Now let $k = g(x + h) - g(x)$, then $g(x) + k = g(x + h)$.
Hence $\frac{f(g(x+h))-f(g(x))}{h} = m(g(x + h) - g(x))\frac{(g(x+h)-g(x))}{h}$.
Taking limits as $h \to 0$ we get $\frac{d}{dx}(f(g(x))) = f'(g(x))g'(x)$.